The Linearized Crocco Equation
نویسندگان
چکیده
منابع مشابه
The Linearized Crocco Equation
In this paper, we study the existence and uniqueness of a degenerate parabolic equation, with nonhomogeneous boundary conditions, coming from the linearization of the Crocco equation [12]. The Crocco equation is a nonlinear degenerate parabolic equation obtained from the Prandtl equations with the so-called Crocco transformation. The linearized Crocco equation plays a major role in stabilizatio...
متن کاملLinearized numerical schemes for the Boussinesq equation
Two different linearized schemes are applied to a parametric finite-difference scheme concerning the numerical solution of the Boussinesq equation. At the first linearized scheme the nonlinear term of the equation is substituted by an appropriate value, while at the second scheme we use Taylor’s expansion. Both schemes are analyzed for local truncation error, stability and convergence. The resu...
متن کاملOn the Linearized Balescu-lenard Equation
Abstract. The Balescu-Lenard equation from plasma physics is widely considered to include a highly accurate correction to Landau’s fundamental collision operator. Yet so far it has seen very little mathematical study. We perform an extensive linearized analysis of this equation, which includes determining the asymptotic behavior of the new components of the linearized operator and establishing ...
متن کاملTraveltime computation with the linearized eikonal equation
Traveltime computation is an important part of seismic imaging algorithms. Conventional implementations of Kirchhoff migration require precomputing traveltime tables or include traveltime calculation in the innermost computational loop . The cost of traveltime computations is especially noticeable in the case of 3-D prestack imaging where the input data size increases the level of nesting in co...
متن کامل–estimates for the Linearized Monge–ampère Equation
Let Ω ⊆ Rn be a strictly convex domain and let φ ∈ C2(Ω) be a convex function such that λ ≤ detD2φ ≤ Λ in Ω. The linearized Monge– Ampère equation is LΦu = trace(ΦD u) = f, where Φ = (detD2φ)(D2φ)−1 is the matrix of cofactors of D2φ. We prove that there exist p > 0 and C > 0 depending only on n, λ,Λ, and dist(Ω′,Ω) such that ‖Du‖Lp(Ω′) ≤ C(‖u‖L∞(Ω) + ‖f‖Ln(Ω)) for all solutions u ∈ C2(Ω) to the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Fluid Mechanics
سال: 2006
ISSN: 1422-6928,1422-6952
DOI: 10.1007/s00021-005-0186-2